

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributing Guide

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/toki-project/toki/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Toki could always use more documentation, whether as part of the
official Toki docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/toki-project/toki/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up toki for local development.

	Fork the toki repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/toki.git

	Install your local copy into a virtual environment. Assuming want to use conda environment, this is how you set up your fork for local development:

 $ conda env create -n toki-dev --file docker/environment-dev.yml
 $ make develop

	Create a branch for local development:

 $ git checkout -b name-of-your-bugfix-or-feature

	Commit your changes and push your branch to GitHub. When you commit a change, as it uses git pre-commit, it will run flake8, mypy, black and isort before commit any change:

 $ git add .
 $ git commit -m "Your detailed description of your changes."
 $ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring.

	The pull request should work for Python 3.8 or newer.

Tips

To run a subset of tests:

 $ pytest tests.test_expr.py

Deploying

TODO: use ``rever`` for deployment

Code of Conduct

Toki is governed by the
NumFOCUS code of conduct [https://numfocus.org/code-of-conduct],
which in a short version is:

	Be kind to others. Do not insult or put down others. Behave professionally. Remember that harassment and sexist, racist, or exclusionary jokes are not appropriate for NumFOCUS.

	All communication should be appropriate for a professional audience including people of many different backgrounds. Sexual language and imagery is not appropriate.

	NumFOCUS is dedicated to providing a harassment-free community for everyone, regardless of gender, sexual orientation, gender identity and expression, disability, physical appearance, body size, race, or religion. We do not tolerate harassment of community members in any form.

	Thank you for helping make this a welcoming, friendly community for all.

Contributors

Maintainers

	Ivan Ogasawara ivan.ogasawara@gmail.com

Contributors

Check the list of contributors at
github toki contributors page [https://github.com/toki-project/toki/graphs/contributors]

Installation

Stable release

To install Toki, run this command in your terminal:

$ pip install toki

This is the preferred method to install Toki, as it will always install
the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python
installation
guide [http://docs.python-guide.org/en/latest/starting/installation/]
can guide you through the process.

From sources

The sources for Toki can be downloaded from the Github
repo [https://github.com/toki-project/toki].

You can either clone the public repository:

$ git clone git://github.com/toki-project/toki

Or download the
tarball [https://github.com/toki-project/toki/tarball/main]:

$ curl -OL https://github.com/toki-project/toki/tarball/main

Once you have a copy of the source, you can install it with:

$ python setup.py install

Toki - Data Expression API

last update: 2020-06-24

Expression is the base class used to create any kind of expressions inside toki.

A toki expression is based on metadsl expression and, in general, it would create
expressions for types, datatypes and operations.

Currently there is no way to change `__init__` or `__new__` methods of an expression class.
Each time an expression is instantiated, `metadsl` clones that expression, so the
`__new__` method is called again and receives some parameters used by the `metadsl` expression.

For now, we can define a method expr that will create a new expression for that class:

e = Literal.expr(1, type='int64')

Every function, method or class should use typing.

Initially, Toki core has the following main modules:

	api

	datatypes

	operations

	rules

	types

The main expression classes should use Expr suffix, facilitating the identification of which classes
are the base classes, for example: Expr, DataTypeExpr TypeExpr and OperationExpr.
Generally, these classes are not used directly, they can be used for typing or as base or metaclass classes.

API

toki.api is responsable for preparing toki API, creating expression for each combination of
operations and types and datatypes.

Data Types

toki.datatypes is responsible for defining all the data type expressions. Its main class
is DataTypeExpr. All the other data type classes shouldn’t use the suffix Expr.

The initial toki plan is to add support for numeric, text, boolean and date/time data types.

Data type expressions can be created using expression constructor functions.
Generally, these constructors could be used with 1 positional parameter or a keyword value:

	for Int64: int64(1) or int64(value=1)

	for Float64: float64(1.0) or float64(value=1.0)

	for Date: date('2020-02-02') or date('2020-02-02')

Some expression constructors could have extra parameters, for example: Decimal('1.1234', precision=4)

Internally, this module is commonly abbreviated as `dts`.

Operations

toki.operations is responsible for defining all the expressions for operations, such as
Add, Subtract, etc. Its main class is OperationExpr. All the other operation classes
shouldn’t use the suffix Expr. If it is a base operation used for other classes, the
suffix Op should be used (e.g. BinaryOp).

toki operations should have a result_type object that will be used to create a result expression.

This is a 2-step expression: 1) it creates an instance of an operation expression and it
is used as a parameter for 2) an instance of a datatype, type or another operation expression,
according to the result_type. It would look similar to:

n1 = int64(1)
n2 = int64(2)

(n1 + n2) -> Add(left=n1, right=n2) -> IntegerScalar(parent=Add(left=n1, right=n2))

For the second step we could use the keyword source or parent or value. For now,
parent will be used because the expressions are nodes in a graph. But it is open for discussion.

Internally, this module is commonly abbreviated as `ops`.

Rules

toki.rules is responsible for defining all the expression types.

Internally, this module is commonly abbreviated as `rls`.

Types

toki.types is responsible for defining all the expression types. For example the main toki
expression class is Expr

Internally, this module is commonly abbreviated as `tps`.

Backends subpackage

toki aims to supply, initially, some base backends, such as String Standard SQL and SQLAlchemy,
so new backends could just inherit that.

General notes

	toki supports python >= 3.8.

Release notes

Toki Roadmap

(2020-05-30 - in progress)

toki is still on a MVP (Minimum viable product) stage. For this phase,
it aims adding initial support for:

	basic datatypes (numeric, string, boolean and date/time)

	basic operations to work with the initial datatypes

	initial table, schema and projection (single or multiple columns) expressions

	visualization

	packaging (pypi and conda-forge)

Usage

To use Toki in a project:

import toki

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

